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Abstract

Background: Cardiovascular disease remains the primary cause of death worldwide. In the US, deaths due to
cardiovascular disease for women exceed those of men. While cultural and psychosocial factors such as education,
economic status, marital status and access to healthcare contribute to sex differences in adverse outcomes,
physiological and molecular bases of differences between women and men that contribute to development of
cardiovascular disease and response to therapy remain underexplored.

Methods: This article describes concepts, methods and procedures to assist in the design of animal and tissue/cell
based studies of sex differences in cardiovascular structure, function and models of disease.

Results: To address knowledge gaps, study designs must incorporate appropriate experimental material including
species/strain characteristics, sex and hormonal status. Determining whether a sex difference exists in a trait must
take into account the reproductive status and history of the animal including those used for tissue (cell) harvest,
such as the presence of gonadal steroids at the time of testing, during development or number of pregnancies.
When selecting the type of experimental animal, additional consideration should be given to diet requirements
(soy or plant based influencing consumption of phytoestrogen), lifespan, frequency of estrous cycle in females, and
ability to investigate developmental or environmental components of disease modulation. Stress imposed by
disruption of sleep/wake cycles, patterns of social interaction (or degree of social isolation), or handling may
influence adrenal hormones that interact with pathways activated by the sex steroid hormones. Care must be
given to selection of hormonal treatment and route of administration.

Conclusions: Accounting for sex in the design and interpretation of studies including pharmacological effects of
drugs is essential to increase the foundation of basic knowledge upon which to build translational approaches to
prevent, diagnose and treat cardiovascular diseases in humans.

Keywords: animal models, estrogen, gender, genomics, sex chromosomes, sex steroid hormones, study design,
testosterone

Introduction
There are significant disparities between women and
men in the incidence of, and mortality from, cardiovas-
cular disease [1-4]. Thus, there is a need for improve-
ment in the current preventive, diagnostic and

treatment strategies by accounting for sex-specific differ-
ences in the etiology and risk factors of cardiovascular
disease. In 2001, the Institute of Medicine advocated
that a better understanding of differences in human dis-
eases between males and females, with translation of
these differences into clinical practice, requires consid-
eration of sex as an important biological variable in
design of basic research [5]. Funding agencies in the US,
Canada and the European Union require inclusion of
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women in governmental sponsored research and ana-
lyses of outcomes by sex [6-10]. Often, however, imple-
mentation of those requirements is not met. Even if the
requirement is met, including men and women in clini-
cal studies often does not advance the goal of under-
standing sex differences as there is no requirement to
compare the sexes nor is there a requirement to suffi-
ciently power studies to do so [11-15]. Furthermore,
there are no requirements for inclusion of male and
female animals in basic, mechanistic, or preclinical stu-
dies and often sex is not reported as a critical biological
variable in the study design [16-18].
This paper is intended as a guide to help formulate

hypothesis-driven studies of cardiovascular function
accounting for sex as a biological variable. Design con-
siderations for studies on sex differences of cardiovascu-
lar disease will be discussed to extend those which have
been developed for studies of brain and behavior
[19,20], neuroprotection after stroke [21], and pain and
analgesia [22]. Advantages and disadvantages of various
cell/tissue culture systems and experimental animals
(from transgenic mice to non-human primates) will be
reviewed along with methods to differentiate sex-specific
effects caused by various factors (for example, sex chro-
mosomes and gonadal hormones). Questions are posed
to direct investigators toward optimizing the choice of
experimental system to maximize the information
gained for translation to human medicine. Application
of genetic studies including quantitative trait locus map-
ping will be evaluated in relationship to cardiovascular
phenotypes of different model species. Finally, recom-
mendations are provided for statistical analysis and
future research directions. Accounting for sex in the
design and interpretation of basic research of cardiovas-
cular structure, function and disease is essential to
achieve scientific excellence whether such studies utilize
cultured cells, isolated tissues, or experimental animals
[23,24] and is essential to increase the foundation of
basic knowledge upon which to build translational
approaches to medical care of humans [25-28]. Informa-
tion provided in this paper will help guide the investiga-
tor toward that excellence.

Definitions
Sex, a biological construct, gender, a psychosocial con-
struct, and environment contribute to disparities in car-
diovascular disease separately or through interactions.
Studies using cells and tissues or experimental animals
can be designed to identify these differences and
interactions.
Terminology related to sex steroid hormones
’Sex’, a biological construct, refers to biological differ-
ences defined by sex chromosomes (XX, XY) and the
presence of functional reproductive organs and sex

steroids [5,19,20]. Biological questions require identifica-
tion of which cells, tissues and organs demonstrate
dimorphic structure and function related to cardiovascu-
lar disease. ‘Gender’, a cultural construct, refers to beha-
viors thought to be directed by specific stimuli, such as
olfaction, for example, or by psychosocial expectations
that result or accrue on the basis of assigned or per-
ceived sex. Thus, gender can influence biological out-
comes. For example, in a society where one sex is
devalued relative to the other, the devalued gender may
experience increased stress through reduced autonomy
or access to nutrition/water/sleep, or in the case of
humans, access to medical resources, which may influ-
ence development of cardiovascular disease, diagnosis
and subsequent treatment. Thus, sex is considered a
dichotomous variable; gender is a continuous variable as
defined by a range of characteristics that might vary
with age, species (animals), or ethnicity (humans), geo-
graphical location, education, and culture. Most studies
using animals categorized by anatomical features and
chromosomes can be described as studies of ‘sex differ-
ences’, with identification of dimorphic cellular, tissue,
or organ functions. However, studies using animals can
also be designed to answer questions which address psy-
chosocial constructs, such as whether hierarchical social
interactions are biologically based and whether they
influence biological imprinting, or vice versa, in relation-
ship to cardiovascular disease.
What are sex steroid hormones?
As described above, sex is defined by the XX or XY
chromosomal complement and the presence of sex
organs and sex steroid hormones. Sex steroid hormones
fall into three general classes of hormones: androgens,
estrogens and progestogens. Intracellular and intranuc-
lear actions of hormones belonging to these classes are
mediated through binding of the hormones to specific
receptors. Extensive reviews of the types and cellular
mechanisms of action of these receptors are available
[29-36].
Designing experiments in which one intends to evalu-

ate effects of sex steroids on cardiovascular disease pro-
cesses require the mention of certain caveats. First,
hormones belonging to each of these classes are synthe-
sized naturally in mammals. However, synthetic analogs
of the naturally produced hormones are also available
commercially. Most natural steroid hormones bind to
only one class of intracellular receptor. For example, the
naturally occurring estrogen, 17b-estradiol, binds only
to estrogen receptors and not to an androgen or proges-
terone receptor, and naturally occurring progesterone
binds only to the progesterone receptor. However, many
synthetic steroids bind to multiple classes of steroid
receptors. Thus, for example, it is important to distin-
guish synthetic progestogens from the natural hormone
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as they may differ in their affinity for progesterone and/
or glucocorticoid receptors or their antimineralocorti-
coid effects [32,37,38]. In addition, certain progestogens
may bind to the androgen receptor. These may antago-
nize actions of endogenous androgens by reversibly
binding to the androgen receptor but because these pro-
gestogens are ‘weak androgens’, their binding does not
initiate the full cascade of intracellular actions such as
translocation to the nucleus and initiation receptor-
mediated DNA transcription [39-41]. This issue is of
particular importance in evaluating effects of hormonal
treatments (hormonally based contraception, oophorect-
omy and hormonal treatments, including those of selec-
tive estrogen receptor modulators (SERMS)) on
cardiovascular function and disease.
A second consideration regarding studies utilizing sex

steroid hormones is that of tissue production indepen-
dent of primary sources. Although the primary source
of production of androgens is the testes in males and
the ovary for production of estrogens and progesterone
in females, local steroidogenesis and possible production
of steroids from ‘precursor’ compounds at the cell mem-
brane or within the cytoplasm in non-sex organs may
also occur. Thus, steroid exposure may occur on a tissue
or cell level that is not reflected by measurement of cir-
culating levels of sex steroids [42-46].
The third consideration regarding the evaluation of

hormonal effects in design of studies investigating sex
differences is that metabolic products of androgens and
estrogens have biologic activity. The androgen, 5-dehy-
droepiandrosterone (DHEA) is synthesized from choles-
terol in the adrenal gland, testes and ovaries.
Testosterone, as well as five other androgens, is synthe-
sized from DHEA. Testosterone can be aromatized to
17b-estradiol while the androgen, 5a-dihydrotestoster-
one (DHT), cannot be aromatized. Therefore, for studies
in which the investigator administers an androgen but
does not want to risk increasing estradiol synthesis,
DHT can be substituted for testosterone. However,
DHT is more biologically active because it binds to the
androgen receptor with a 15-fold higher affinity than
testosterone [31].
The primary estrogen produced by the human ovary is

17b-estradiol, but the term ‘estrogen’ encompasses
metabolites of 17b-estradiol including estrone, estrone
sulfate, estriol, ethinyl estradiol, as well as xenoestro-
gens. Because metabolites of 17b-estradiol are biologi-
cally active [47,48], investigators must be specific about
the hormone used in their studies as well as the mode
of delivery. For example, because of a ‘first pass’ effect
through the liver, oral 17b-estradiol is metabolized to
estrone and estrone conjugates prior to distribution in
the circulation whereas delivery of 17b-estradiol trans-
dermally, subcutaneously, intramuscularly, or vaginally

results in a physiological ratio of estradiol to estrone. In
human females with intact ovaries during reproductive
years, the ratio of 17b-estradiol to estrone is roughly 1:1
[49]. The adrenal glands also manufacture and secrete
estradiol and estrone. Oral products through the ‘first
pass effect’ also increase production of liver proteins,
such as sex hormone-binding globulin (SHBG) and clot-
ting factors, with attendant biological consequences.
Terminology is also important. For example, a mixture

of conjugated estrogen metabolites derived from urine
of pregnant mares (conjugated equine estrogen (CEE)),
which contains primarily equilin sulfate and estrone sul-
fate (and other metabolites of estrogen, as well as andro-
gens) was used in the Women’s Health Initiative. Oral
administration of this compound was used to determine
effects of ‘estrogen treatment’ for primary prevention of
cardiovascular disease in postmenopausal women. Publi-
cations from this trial refer to the effects of ‘estrogen’
but, in fact, are the effects of a mixture of steroid meta-
bolites, and thus the findings may not be applicable to
other specific estrogenic products delivered by other
routes or to results of studies conducted in experimental
animals where 17b-estradiol was administered subcuta-
neously [50-54].

Design considerations and choice of experimental models
Choice of an experimental system will affect outcomes
and should be considered carefully in design of experi-
ments to evaluate sex differences in cardiovascular dis-
ease as many unanswered questions exist regarding
whether sex differences in a particular phenotype are
due to sex, hormones, or sex × hormone interactions at
various life stages.
Origins of sex differences
All biological sex differences are initiated by the genes
of the sex chromosomes, which are the only genes that
are inherited in a sex-specific manner. Differences
between XY and XX cells can be attributed to: (1) the
presence of Y genes only in male cells, (2) the presence
of a higher dose of X genes in XX compared to XY cells
with random X-inactivation of one X chromosome in
XX cells, (3) mixed maternal and paternal genomic
imprint on X genes in XX cells, and/or (4) only mater-
nal imprinting on X genes in XY cells [19]. The SRY
gene on the Y chromosome, which determines the
development of the testis and the subsequent secretion
of male sex hormones, also influences expression of
other genes on the autosomal chromosomes. Sex hor-
mones at critical periods in development influence cellu-
lar differentiation, which may also be influenced by
environmental factors. Another way to frame these
interactions is as hormone-independent sexual differen-
tiation, hormone-dependent sexual differentiation and
sex-specific hormone actions. Determining whether a
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trait or condition is a sex difference requires a systema-
tic approach to separate the interactions of sex chromo-
somes, sex hormones and environment. A logical series
of experimental questions that has been proposed for
studies in brain and behavior [19] can serve as a guide
for investigators in cardiovascular disease research as
well. These are: (1) is there a sex difference in the trait/
phenotype? (2) Does the sex difference result from the
hormonal status of the test system (cells in culture, iso-
lated tissues or animals) at the time of testing? (3) Is the
hormonal action specific to or modified by sex? (4)
Does the sex difference result from permanent differen-
tiating effects of gonadal hormones? (5) Is the sex differ-
ence due to genomic or non-genomic responses to the
sex steroids? And (6) does the sex difference result from
a sex chromosomal influence on autosomal gene
expression?
Choice of experimental systems
The choice of an experimental system will depend on
the question being asked and the hypothesis to be
tested. In contemporary publishing, methodological
details including the sex of the research material or ani-
mals are often omitted from research papers or rele-
gated to supplementary material. However, it is just
these methodological details that allow investigators to
reproduce experiments of others and to understand how
important variables such as sex or hormonal status may
influence outcomes. The Institute for Laboratory Animal
Research and their official publication (ILAR Journal) is
a rich resource for details regarding reproductive, hor-
monal and developmental information of various animal
species used in cardiovascular disease research. Several
general considerations are provided below for some of
the more common experimental systems employed to
address mechanisms of cardiovascular function.
Cells in culture and isolated tissues Cultured vascular
endothelial cells, smooth muscle cells and cardiac myo-
cytes (including neonatal cells), as well as isolated blood
vessels and hearts, are used in experiments that explore
intracellular signaling mechanisms in the development
and treatment of cardiovascular disease. While most sig-
naling pathways may be common in cells/tissues derived
from female and male animals, it is important to under-
stand which pathways may or may not show a sex dif-
ference as gene and protein expressions are influenced
by both sex and hormones [55-62]. The same can be
said for stem and progenitor cells being cultured for
cell-based therapies [63-66]. For example in mice, cells
derived from female animals appear to be more effective
at both reversing disease and restoring a pre-disease
level of cells to bone marrow than male-derived cells
[66]. Differences in the efficacy of male and female cells
could possibly be attributed to differences in paracrine
factors (for example, cytokines) [65]. Comparison of

these preclinical vascular data to early human clinical
data suggest that sex-based differences in progenitor cell
numbers and function seen in mouse models of athero-
sclerosis and acute myocardial infarction reflect human
clinical scenarios [64].
The following points should be addressed in design of

experiments using cultured cells, isolated stem and pro-
genitor cells, and isolated tissues: (1) is expression of the
receptor, pathway, enzyme, and so on, or the number of
isolated progenitor cells affected by the sex or hormonal
status of the donor animal? For example, would gene
expression/signaling differ depending on whether the
donor animal was studied before sexual maturity, was
sexually mature (null or multiparous), or was reproduc-
tively senescent? (2) Would number of cells, gene
expression or phenotype be affected by gonadectomy of
the donor either before or after sexual maturity? (3)
How does the expression of the pathway of interest or
phenotype of progenitor cells change with passage of
cells exposed to hormones in culture media using fetal
bovine serum? (4) Is the choice of cell/tissue donor
appropriate for the mechanism of interest related to
human disease in regard to sex, age and hormonal sta-
tus? (5) For cell-based therapies, given potential sex dif-
ferences in cell number, phenotype, and potency, should
sex mismatched allogeneic cells be considered as a ther-
apeutic option? If so, is the donor appropriate for the
mechanism of interest related to human disease in
regard to sex, age and hormonal status?
The age/hormonal status of the donor for cell/tissue

may not be available depending on the source of the
material (that is, abattoir, human material for which
medical information/records are not available, some
immortalized cell lines). If the sex of the cell/tissue
donor is not known, it can be determined by a PCR-
based assay to identify specific fragments of the X and Y
chromosomes. For example, a multiplex PCR-based
method was developed to measure a 475-bp fragment
from the ABCD1 gene (X chromosome) and a 231-bp
fragment from the SRY gene (Y chromosome) [67]. This
method has been refined and extended to a high-
throughput automated setting [68].
Sex of neonatal animals (including mice and rats) can

be determined by examining the anogenital distance
[69]. In larger animals the presence of gonads should be
confirmed as some male animals obtained from com-
mercial suppliers (in particular, pigs) may be castrated
at birth, and, therefore, studies in these animals would
yield cells developed or differentiated under a sex hor-
mone-depleted environment.
As sex differences are influenced both by the sex

chromosomes and sex hormones, care must be taken to
control the hormonal environment of cultured cells.
Some media, in particular, fetal calf serum, contain sex
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steroid hormones that could influence the pathway/sig-
nal of interest. Media can be stripped of hormones by
charcoal treatment. When hormones are added to the
media, care should be taken to control for the solvent
used for lipophilic compounds and to consider that both
testosterone and 17b-estradiol may be metabolized by
the tissue. Thus, a given concentration of sex steroid
added at day 1 of a culture cycle may not be sustained
over a long period of time. Alternatively, exposure of
cells to hormones may ‘imprint’ the cell phenotype over
several passages [70,71]. As sex steroid hormones initi-
ate rapid actions that do not require gene transcription
(non-genomic actions) as well as effects on gene tran-
scription (genomic actions) that represent different tem-
poral sequences, duration of exposure to the hormone
of interest is a critical consideration in study design.
For example, prolonged exposure of certain cells to

17b estradiol increases synthesis of endothelial nitric
oxide synthase (eNOS) via a genomic mechanism caused
by binding of the ligand-bound estrogen receptor a
(ERa) to an estrogen response element (ERE) on the
eNOS gene [37]. However, estradiol also acutely
increases eNOS activity and release of nitric oxide via a
non-genomic effect that is due to an increase in intra-
cellular calcium [37]. Data also suggest that there is a
plasma membrane-associated, G-protein coupled estro-
gen receptor (GPR30 or GPER) [41]. However, the spe-
cificity of this receptor is controversial since GPR30 also
mediates rapid aldosterone-mediated effects on the vas-
culature [32,33,72]. Androgens also produce genomic
effects via androgen response elements (AREs) in genes,
but cause acute vasodilation by a non-genomic mechan-
ism that involves activation of calcium activated potas-
sium channels [73,74]. Future studies are necessary to
completely understand the genomic and non-genomic
effects of sex steroids and the mechanisms responsible
for modulating cardiovascular function including
whether the chromosomal constitution of the cell mod-
ulates responses to steroids via transcription factors, dif-
ferential expression of protein chaperones, methylation
of DNA, and so on [32,33,72].
Experimental animals Several mammals are used in
studies of cardiovascular disease. General considerations
for the selection of the appropriate species include cost,
size, housing requirements, diurnal activity cycle, diet
requirements (soy or plant based influencing consump-
tion of phytoestrogen) [75], lifespan, frequency of
estrous cycle in females, ability to perform genetic
manipulations, ability to investigate developmental and/
or environmental components of disease modulation
[76]. Stress imposed by disruption of sleep/wake cycles,
patterns of social interaction (or degree of social isola-
tion), or handling may influence some parameters (for
example, corticosteroids and catecholamines) that

interact with pathways activated by the sex-steroid hor-
mones [77,78].
Of the small mammals, rats and mice are used most

often to model cardiovascular disease because of their
short life span, short estrous cycle and gestation, modest
cost of housing, and the ability to perform genetic
manipulation in them. Both the strain and sex of the
animals are known to influence expression of cardiovas-
cular pathologies [79,80].
Transgenic mice (and some transgenic rats) that con-

tain estrogen and androgen receptor knockouts are
commercially available for study. Although preliminary,
use of these animals to study the onset and progression
of vascular disease has shown that the number of vascu-
lar progenitor cells found in bone marrow and blood is
decreased in estrogen receptor knockout (ERKO) mice
compared to wild type controls. These transgenic ani-
mals are especially valuable to study the role of sex ster-
oids and their receptors in cardiovascular disease. While
the global ERKO mice are viable and fairly healthy, glo-
bal androgen receptor knockouts (ARKO) have serious
developmental problems [81]. For example, the global
ARKO exhibit neutropenia, osteopenia, low levels of
serum testosterone, arrested spermatogenesis, and
females have a reduced number of pups compared to
wild type mice [81]. Therefore, especially for androgen
receptor, specific tissue-directed androgen receptor
knockouts, using Cre-loxP methods, are preferred
[82-85]. Cre-loxP technology allows for knockout or
expression of a gene of interest in a specific tissue [86].
Briefly, the site-specific recombinase Cre (cyclization
recombination) from the bacteriophage P1 is used to
induce recombination between two 34 bp recognition
sites (loxP = ‘locus of crossing over in P1’) inserted into
the genome. These loxP sites contain two 13 bp inverted
repeats surrounding an 8 bp core sequence that provides
directionality. Thus, two transgenic mouse strains are
necessary to develop a cell-specific knockout: one strain
that has the Cre recombinase expressed under the con-
trol of a cell specific promoter, and one that contains
the gene of interest (or a critical exon of it) that is
flanked by two loxP sites (termed ‘floxed’). Following
one round of crossbreeding, double transgenic pups
containing both the floxed transgene and the Cre trans-
gene are selected by genotyping. In a second round of
breeding the double heterozygotes are either inbred or
bred to the floxed mouse line. In the F2 generation, het-
erozygotes for the floxed allele and the Cre transgene
are selected since the floxed gene/exon will be excised
selectively in the cell types that express Cre recombinase
(taken from review in [86]). For the androgen receptor,
there have been several Cre/loxP mice developed for
reproductive tissues, as well as adipose tissues, skeletal
muscle, bone, T cells and B cells, liver and skin, to

Miller et al. Biology of Sex Differences 2011, 2:14
http://www.bsd-journal.com/content/2/1/14

Page 5 of 18



name a few [82]. The use of cell-specific knockouts of
AR thus allows the investigator to specifically study the
role of AR in their tissue/cell of choice while minimizing
the effects of global changes that would complicate the
study and perhaps make interpretation ambiguous. It
should be kept in mind that the gene for the androgen
receptor resides on the X chromosome. Thus, studies
androgen actions in females are complicated by X inac-
tivation which results in mosaic expression of any poly-
morphisms that reside in this gene or others which have
the potential to affect cardiovascular function in females.
One caveat about the use of mice, transgenic or other-

wise, is that uncertainties still exist regarding the degree
to which cardiovascular phenomena, especially the
pathobiology of atherosclerosis in these rodents, can be
translated to human beings (see review in [87]). How-
ever, Taylor and colleagues [65,66,88] have shown in
apoE-/- mice and preliminarily in ERKO mice: (1) the
onset and progression of atherosclerosis differs in male
and female animals with the onset of disease occurring
earlier in males and catching up with aging in females,
similar to that in humans; (2) that the composition of
the bone marrow in male and female animals differs
and changes over time with aging consisting with the
onset and progression of disease; (3) that the use of
bone marrow mononuclear cells from females is suffi-
cient to decrease atherosclerotic plaque in males but
that the converse is not true; and (4) that the number of
circulating cytokines differs based on sex and degree of
disease with proinflammatory cytokines being higher in
the circulations of males than in females.
Based on a spontaneous deletion of the SRY gene

from the Y chromosome, Arnold and colleagues have
developed transgenic animals for evaluating whether a
phenotype follows gonadal sex or sex chromosome com-
plement [89]. For example, these investigators developed
transgenic animals to ‘knock-in’ the SRY gene on an
autosome of XX animals to provide mice that have
testes but XX chromosomes; alternatively, with the
spontaneous deletion of the SRY gene from the Y chro-
mosome, mice have ovaries but XY chromosomes. This
allows the investigator to determine if a sex difference
in phenotype correlates with the type of sex chromo-
somes (XX or XY) or with gonadal sex of the animal.
Using these intact and gonadectomized animals, investi-
gators can separate the contribution of sex steroids from
sex chromosomes (the interaction of sex and sex hor-
mones, that is, sex specific hormone action) in mediat-
ing sex differences in cardiovascular function and
dysfunction.
In addition to transgenic animals, inbred and congenic

strains of rats have been used extensively to study
mechanisms responsible for sex differences in cardiovas-
cular disease etiology. For example, Dahl salt sensitive

rats exhibit hypertension with aging or more rapidly
with a high salt diet [90]. High salt diet-mediated hyper-
tension is exacerbated in males and ovariectomized
females and attenuated in castrated males and intact
females [91,92]. Spontaneously hypertensive rats (SHR)
also exhibit sex differences in blood pressure control,
with males exhibiting higher blood pressures than
females [93]. Sex differences in the pressor response to
angiotensin II have also been documented in mice and
rats [94,95].
With regard to rat models that mimic menopause,

both SHR and Dahl salt sensitive rats have been used.
Both strains of rats exhibit naturally increasing blood
pressure when they stop estrous cycling, and have been
used to study the mechanisms responsible for postme-
nopausal hypertension. However, in female rats after
cessation of estrous cycling, estradiol levels do not fall
as low as in women following menopause which is a
common criticism of using rats as a model of meno-
pause. To address this problem, investigators have used
4-vinylcyclohexene diepoxide (VCD), a chemical toxin
that causes ovarian failure by targeting pre-antral folli-
cles [96-99]. VCD can be used in rats and mice and
allows for studies to be performed during a perimeno-
pausal period [96,100]. Treatment of animals with VCD
causes a follicular depleted state and a cessation in the
production of female ovarian hormones within approxi-
mately 50 to 75 days after injection, with full cessation
of estrogen production and obsolescence of the follicles
by 129 days [97]. The advantages of this model are two-
fold. First, the rodents undergo a sustained period with
no estrogen production. Second, VCD can be given in a
young adult animal to simulate early ovarian failure
[101]. Since the VCD ovary produces androgens just as
do ovaries of postmenopausal women, perhaps this best
models ovarian failure in women [102-106]. The investi-
gator should keep in mind that studies in women with
early ovarian failure (19 to 39 years of age) showed that
they responded to transdermal estradiol with reductions
in blood pressure, angiotensin II and creatinine [107],
whereas in women who go through natural menopause
(average age 51 years), the effects of estradiol are not as
clear which was evident by the results of the Women’s
Health Initiative [108]. Thus, chemical menopause may
be a better option to examine interactions of aging with
estrogen depletion rather than the loss of all ovarian
hormones as would result from ovariectomy.
There is a growing literature that considers sex differ-

ences in mouse strains and cardiovascular disease, sex-
specific differences in the impact of particular bone
marrow, blood, cardiac and vascular progenitors cells
[65,66] and sex-specific influence of particular gene
effects [87,109,110]. In this light, many of the strategies
used by geneticists to identify and characterize specific
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gene effects on cardiovascular disease-related pheno-
types can easily accommodate tests of hypotheses sur-
rounding the sex specificity of those gene effects, as will
be discussed in the section on ‘Identifying genes that
exhibit sex-specific or sex-interaction effects’ below.
Rabbits historically have been used in studies of auto-

nomic and pharmacological regulation of vascular tone
and vascular remodeling associated with atherosclerosis,
ischemia reperfusion and stroke [111-122]. The Wata-
nabe breed develops spontaneous atherosclerosis
[123,124], but other breeds develop atheromatous
lesions in conduit arteries after feeding with high cho-
lesterol diets [112,113,125,126]. Sex differences for some
vascular functions and castration with hormone replace-
ment indicate that both sex and hormones modulate
these effects [127-129]. Rabbits also express the same
myocardial contractile protein isoforms as humans (for
example, b versus a myosin heavy chain in the adult
ventricle) and have a myocardial blood reserve that
more closely resembles humans [130] more so than that
of rats or dogs [131]. Based on these similarities to
humans, rabbits have also been used to evaluate acute
myocardial infarction therapies [132-134].
Rabbits and rodents are coprophagic thus influencing

dietary sources of protein [135]. It is unclear how this
activity influences immunological responses in these
species related to nitric oxide synthase Il (iNOS) or
other isoforms of NOS that might be regulated by estro-
gen and are associated with inflammatory responses
proposed as a stimulus for endothelial dysfunction and
vascular disease [136-139].
Larger mammals, such as cattle, sheep, dogs, pigs and

primates, offer the advantage of scale for testing devices
and procedures to be developed in humans (for exam-
ple, [140]) but are disadvantaged by availability, cost,
and special requirements for handling and husbandry.
While some large animals are available from commercial
breeders, others are not, and it may be economical for
some tissues to be obtained from abattoirs (cattle, pigs).
However, limitations on sources may make it difficult to
determine the sex and or hormonal status of the tissue
donor. Commercially available animals may be castrated
at birth, which affects hormonally mediated develop-
mental processes, or may be sexually immature at the
time of study making extrapolation of data to adult ani-
mals problematic. Retired breeder females have been
used for studies of aging, but it is unclear if cardiovascu-
lar function(s) of multiparous animals are the same or
different from age-matched nulliparous females or aged
matched males. Reckelhoff and colleagues reported that
renal function was decreased in Sprague Dawley female
rats who had had six to seven pregnancies and lactations
compared to virgin females [141], whereas Baylis and
colleagues reported that renal function and blood

pressure were not affected by three pregnancies and lac-
tations in spontaneously hypertensive rats [142]. Retired
breeder rabbits have been used for models of cell-based
treatment for acute myocardial infarction and seem to
be a reasonable model for human disease [132-134].
Thus, studies in retired breeders may more closely
mimic the cardiovascular systems of most women than
do virgin female animals.
Historically, dogs were the experimental animal of

choice for investigating mechanisms of cardiac regula-
tion and autonomic control of the vasculature, renal
function, models of disease, development of imaging
modalities, testing novel therapeutics, basic pharmacol-
ogy of endothelial and smooth muscle function and
aging [143-153]. Depending on the source of the ani-
mals, however, it may not always be possible to obtain
information on age or reproductive history. While stu-
dies of ovariectomized and hormone replaced female
dogs have been performed [152,154], studies in castrated
male dogs are not reported in cardiovascular literature.
Swine smaller than 100 kg used in research are usually

sexually immature, with the exception of Yucatan mini-
swine. Depending on the supplier, males may be
castrated at birth, so designation of ‘male’ with a weight
of less than 100 kg may not represent results compar-
able to sexually mature animals [155-157]. Alternatively,
sexually immature females (about 3 months of age) are
used to maintain manageable sizes. The level of maturity
or hormonal status for these animals is often not
reported in methods sections of scientific papers. Ossa-
baw miniature swine (Sus scrofa) have a ‘thrifty geno-
type’ that when fed a high caloric diet enables them to
store fat in order to survive seasonal food shortages.
The phenotype of these female animals including central
obesity, insulin resistance, impaired glucose tolerance,
dyslipidemia and hypertension, are characteristics com-
parable to those used to define metabolic syndrome in
humans. The atherosclerotic lesions in coronary arteries
of the diabetic swine are similar to those found in
humans and the size of the arteries are acceptable for
testing coronary interventions such as stenting
[158-160], thus providing an appropriate experimental
animal to evaluate basic mechanisms of type II diabetes
and treatment strategies which might be more easily be
translated to human disease/treatment [159].
Non-human primates have been used extensively to

study the natural history of atherosclerosis in relation to
sex differences (See [77,161]). Rhesus and cynomolgus
monkeys (Macaca mulatta, Macaca fascicularis, respec-
tively) are particularly useful when fed diets that elevate
blood lipids and the animals develop lesions consistent
in morphological characteristics and location with those
in humans with hyperlipidemia [78]. For example, ather-
osclerosis develops first in the aorta and proximal
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portions of the main branch coronary arteries and later
in the common and internal carotid arteries. At risk ani-
mals (that is, those consuming an atherogenic diet)
experience myocardial infarction at a rate similar to that
of their human counterparts [162]. Finally, the macaques
and other Old World anthropoid primates uniquely
resemble women in reproductive function, as exempli-
fied by similarities in ovarian hormone profiles, the pre-
sence of a menstrual cycle, and the occurrence of
menopause [163].
An extensive series of studies, most conducted using

socially housed female and male cynomolgus monkeys
fed a diet relatively high in fat and cholesterol (designed
to mimic typical consumption in industrialized coun-
tries) has resulted in seminal observations affecting
design of future investigations with translation to
human studies and evaluation of cardiovascular risk.
The points below delineate these key findings.
(1) Females typically develop less atherosclerosis than

males (see [77,164]). However, among socially housed
monkeys this female ‘protection’ extends only to animals
dominant within their social group; subordinate females
exhibit a ‘precocious acceleration’ of atherosclerosis and
are equivalent to males in coronary artery atherosclero-
sis extent.
(2) The precocious atherosclerosis that characterizes

subordinate females likely results from a subclinical
stress-induced, reversible ovarian impairment that
resembles functional hypothalamic amenorrhea/anovula-
tion (FHA) observed in women [165,166]. This hypoth-
esis is supported by the observation that ovariectomy
eliminates the protection of dominant females, render-
ing them equivalent to subordinate females and males
in atherosclerosis extent [165,167]. Treatment of subor-
dinate animals with exogenous estrogen (oral contracep-
tives) inhibits the development of atherosclerosis
[168,169].
(3) The trajectory of premenopausal atherosclerosis

predicts postmenopausal atherosclerosis extent. In a
two-part study reproductively intact monkeys consumed
an atherogenic diet for 2 years, half were also treated
with an oral contraceptive [168]; all animals were ovar-
iectomized and continued to consume an atherogenic
diet for 3 more years. Atherosclerosis extent at ovariect-
omy (as determined in an iliac artery biopsy) predicted
the amount of atherosclerosis present at the end of the
study [169,170], irrespective of postmenopausal
interventions.
(4) The extensive atherosclerosis that accompanies

ovariectomy can be substantially inhibited by treatment
with exogenous estrogens (for example, conjugated
equine estrogens or 17b estradiol), only if treatment
begins immediately following ovariectomy in animals
initially free of atherosclerosis [171]; treatment of

animals with pre-existing atherosclerosis is ineffective in
proportion to the amount of lesion present [172,173].
The primary lesson from studies of female monkeys is

that stress-induced premenopausal ovarian dysfunction,
a common and subclinical condition, puts affected indi-
viduals on accelerated trajectory for atherosclerosis.
Furthermore, the trajectory of atherosclerosis established
in the premenopausal years appears to determine post-
menopausal lesion extent, underscoring the importance
of early events in the development of the postmenopau-
sal disease burden.
Although studies in non-human primates have pro-

vided data for several decades of research and form the
basis of studies in humans, the cost and difficulty of
working with these animals make them prohibitive for
many investigators in the future. In this regard, the US
National Institutes of Health (NIH)-sponsored National
Primate Research Center program and specialized col-
ony resources (the Animal and Biological Materials
Resources program) may provide investigators with
access to animals and expertise to conduct studies with
monkeys. Access to these resources is described at the
website of the Division of Comparative Medicine (cur-
rently part of the National Center for Research
Resources but soon to be moved into the Office of the
NIH Director).
Establishing hormonal status in experimental animals
If hormones are implicated in the pathogenesis of cardi-
ovascular disease, then it is incumbent upon those
studying cardiovascular disease in experimental animals
to understand how to quantify gonadal function. In
experimental animals, frequency of estrus in females is
species dependent: polyestrus with several cycles
throughout the year (mice, rats, pigs, primates including
humans), seasonal polyestrus with several cycles occur-
ring at particular times of the year (sheep, hamsters) or
diestrus with two cycles per year (dogs).
In order for female rats and mice to exhibit estrous

cycling, they must be maintained in a 12 h light/dark
cycle in a temperature-controlled room free of vibra-
tions or external noise. Rats and mice of both sexes can
be fertile as early as 5 to 6 weeks of age (37.3 ± 0.7 days
[174]), although the age at puberty can vary in female
mice depending on whether males are present. In rats
and mice, the estrous cycle in adult females is 3 to 5
days, and gestation is 21 to 22 days. Animals caged
together will often cycle together. In addition, rats and
mice cease estrus cycling with aging (similar to meno-
pause), but the age may vary with strain [175]. For
example, Sprague Dawley rats stop estrous cycling at 16
to 18 months of age. However, female hypertensive rats,
such as the spontaneously hypertensive rat and the Dahl
salt sensitive rat maintained on a low salt diet (0.3%
NaCl), both stop estrous cycling between 10 to 12
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months of age [91,176]. At the beginning of estrous
cycle cessation, vaginal smears show constant diestrus
cells that lasts 1 to 3 months. Rats eventually cycle into
constant estrus. Mice are similar and stop estrous
cycling at 11 to 16 months of age depending on strain
[175].
A common way to determine the progression through

the cycle is by vaginal cytology. This method in mice is
described in detail elsewhere [19] and is similar for rats.
Briefly, wetted cotton swabs are placed into the vagina
of the rat or mouse and twirled. Swabs containing accu-
mulated cells are rolled onto dry glass slides and the
slides are allowed to dry. The dry slides are stained with
0.1% toluidine blue, allowed to dry, and cell populations
are viewed with a light microscope to observe cell mor-
phology and populations. Alternatively, for vaginal
lavage, 50 μl of deionized water is placed into the vagi-
nal vault with a plastic pipette taking care not to stimu-
late the cervix [177] that can result in pseudopregnancy.
(Just as in pregnant animals, pseudopregnant animals
develop physiological changes, including weight gain,
increases in glomerular filtration rate, renal plasma flow,
and cardiac output, until days 11 to 13 when they revert
back to the physiology of the non-pregnant state
[178,179].) The pseudopregnant model is useful for stu-
dies of early pregnancy without the presence of the feto-
placental unit, and development of pseudopregnancy in
rats and mice can also be accomplished by placing the
females with vasectomized males.
On vaginal cell morphology, diestrus is characterized

mainly by polymorphonuclear neutrophils (PMNs).
Proestrus is characterized by a preponderance of larger
nucleated epithelial cells. Estrus is characterized by irre-
gularly shaped, cornified cells that contain pyknotic or
no visible nuclei. Metaestrus is characterized by a com-
bination of cornified cells and PMNs [19]. 17b-estradiol
and progesterone levels are highest during proestrus and
lowest during estrus [180-182]. To achieve pregnancy,
female rats and mice are placed with a male preferably
during diestrus. The presence of sperm on the vaginal
smear or presence of a sperm plug is termed ‘day 1 of
pregnancy’.
Staging ovarian cycle in female rabbits is difficult

because rabbits are in a prolonged state of proestrus.
Vaginal probing initiates a surge in gonadotropins that
induces ovulation making them similar to other species
such as mink, ferrets, domestic cats, voles, and camels
in being characterized as ‘reflex ovulators’. In contrast,
the surge in gonadotropins resulting in ovulation origi-
nates internally in rats, pigs, sheep, cows, non-human
primates, and women, leading to their designation as
‘spontaneous ovulators’ [183]. Ovarian cycles in swine
are monthly and females housed together will synchro-
nize their cycles.

Staging reproductive cycle stages may also be dis-
cerned by visual (vulvar swelling or discharge), beha-
vioral signs, vaginal impedance, steroid levels in urine or
serum, or reproductive tract histology depending on
species. It is difficult to identify estrus in female pigs by
changes in external genitalia and estrus is often staged
by behavioral postural changes in the presence of a
male. Female swine are sensitive to stress, such as
changes in housing, which can disrupt cyclicity. As dis-
cussed, anthropoid primates, including Old World mon-
keys and women, appear especially sensitive to the
suppressive effects of negative social interaction or
environmental circumstances [163,165,184].
Gonadal function is rarely quantified in studies using

male animals except with identification of reproductive
maturity and orchiectomy. In humans, men exhibit
declines in testosterone and sperm production when
stressed by metabolic/nutritional/energetic deficiencies
and women exhibit declines in ovarian function and fer-
tility when stressed, but what is stressful to women dif-
fers from what is stressful to men. Comparable studies
in most experimental animals are lacking. In non-
human primates, suppressed ovarian function secondary
to social stress is common and is clearly associated with
precocious acceleration of cardiovascular disease
[77,161,184]. These effects of androgens have not been
systematically assessed on cardiovascular disease of male
monkeys, although atherosclerosis is exacerbated in
ovariectomized females treated with either androstene-
dione or testosterone [185].
Delivery of hormones to castrated animals
Timing of castration/gonadectomy (that is, removing the
gonads shortly after birth prior to sexual development
or after puberty) in animals may be critical in the devel-
opment or progression of cardiovascular disease. Cau-
tion should be exercised in the choice of hormones used
to treat (replace) in a particular study. For example,
both testosterone and 17b-estradiol are metabolized to
biologically active substances. Progesterone at high con-
centrations binds to glucocorticoid receptors and some
synthetic progestogens may have greater affinity for
these receptors than others (see section ‘What are sex
steroid hormones?’ above).
Sex steroids are typically given to experimental ani-

mals either by intramuscular injection or by subcuta-
neous implantation of time-release pellets. For
intramuscular injections, an oil vehicle, such as castor
oil or sesame oil is used. The disadvantage to this
method is that daily injections are required for chronic
studies. For studies in which sustained and consistent
levels of steroids are the objective, commercially avail-
able pellets containing estradiol, progesterone, testoster-
one, dihydrotestosterone, or placebo, are implanted
subcutaneously on the back of the animals. Pellets of
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different release times are available to achieve the
plasma levels desired. Alternatively, sex steroids can be
packed into medical grade silastic tubing, capped with
silastic glue and implanted subcutaneously on the back
of the animal [186]. The delivery dose depends on the
length of the tube and the amount of steroid in the
tube. These implants may be equilibrated by incubation
in physiological saline for 24 hours to reduce the varia-
bility in initial release. With either of these subcuta-
neous delivery methods, plasma levels of hormones
should be monitored for validation.
To mimic estrous cyclicity similar to normal rats and

mice, ovariectomized animals can be injected with estra-
diol and progesterone, as described by Kramer and Bel-
linger [182]. These investigators used osmotic
minipumps to deliver low doses of 17b-estradiol benzo-
ate in ovariectomized female rats to mimic levels during
the diestrus and estrus phases. Rats then received addi-
tional 17b-estradiol benzoate injections every 5 days to
mimic proestrus increases. The investigators performed
vaginal smears twice daily and found that the estrous
cycles in the treated rats mimicked the cycles in intact
females (for details on vaginal cytology, see [19]).
Oral preparations of sex steroids can be used but care

is needed to assure that the animal consumes the ster-
oid. Non-human primates can be easily trained to take
measured amounts of oral formulations, however hor-
mones can also be delivered to these species in the diet,
for example, [169,187]. Final blood concentrations
reached with given preparations (concentration) depends
on steroid metabolism related to first pass metabolism
in the liver.
Measurement of sex steroids
It is usually possible to obtain a blood sample for the
measurement of sex steroids in experimental animals.
The gold standard for measurement of sex steroids such
as testosterone is liquid chromatography linked with
mass spectroscopy [188]. This method removes any pos-
sibility of cross identity of antibodies with similar ster-
oids, such as testosterone with 5a-dihydrotestosterone
or estradiol, in ELISAs or radioimmunoassays (RIAs).
This method may not be cost effective or feasible in all
research or clinical environments.
Various ELISA or RIA kits for sex steroid measure-

ment are commercially available. Estradiol and dihydro-
testosterone are the most difficult to measure and often
require extraction of plasma or serum to obtain consis-
tent results. RIA kits may be difficult to use since the
isotope used for many kits is radioactive iodine-125 and
requires special precaution for use, radioactivity institu-
tional permission, and disposal of gamma radioactivity.
One potential way to mitigate the problems associated

with determination of circulating hormones is to assess
such hormone concentrations in conjunction with

measurement of menstrual cyclicity (as determined by
vaginal swabbing). It has been observed in monkeys, for
example, that abnormalities in ovarian hormone profiles
are mirrored by irregularity in menstrual cyclicity [184].
One precautionary note is that measurement of hor-

mones in the circulation may not be reflective of the
active product at the tissue or cellular level because of
the local metabolism of the sex steroids. Many organs
outside of the reproductive organs contain receptors for
sex steroids, and have the capacity to synthesize these
steroids due to the presence of cytochrome P450
enzymes (see section ‘What are sex steroid hormones?’
above). For example, the kidney can produce sex ster-
oids and androgen receptor and ERa are present in
renal vascular and tubular cells [42]. However, the role
that extragonadal steroid synthesis plays in mediating
cardiovascular alterations in specific organs is not clear
and requires further investigation.
The other compartment of interest may be the cere-

brospinal fluid (CSF). Circulating levels and CSF levels
of sex steroids have rarely been simultaneously quanti-
fied. In the systemic circulation buffering mechanisms
keep hormonal excursions within a given range; these
mechanisms do not seem to operate in the CSF. Hor-
mones, especially cortisol, in CSF are not bound to any
significant degree, thus, CSF hormone levels are ‘free’
and therefore bioactive [189]. These differences might
be important in etiology of cardiovascular disease as
much as cardiovascular regulation including that driven
by stress and baroeceptors and chemoreceptors related
to hypertension depends on neural mechanisms.

Identifying genes that exhibit sex-specific or sex-
interaction effects
An approach to the identification of genes that influence
cardiovascular disease and related phenotypes involves
genotyping a large number of individual progeny from a
cross involving inbred (or in some circumstances
outbred) strains of mice, rats, flies, or another model
species, and using statistical tests to determine if there
are loci that harbor genotypes or genetic variants that
cosegregate with the phenotype of interest. This basic
approach, often referred to as ‘quantitative trait locus’
(QTL) mapping has been pursued for years, with a
number of published reviews describing relevant strate-
gies for implementing the approach, successes with the
approach as well as issues with its various formulations
[190,191]. QTL mapping studies rarely, if ever, lead to
the actual identification of phenotypically relevant cau-
sative genetic variants, but rather lead to the identifica-
tion of a genomic region that is likely harboring a
phenotypically relevant variant. This fact has important
implications for QTL mapping studies seeking to iden-
tify genetic variants that contribute to sex-specific
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cardiovascular phenotypes, since, if evidence for cosegre-
gation between a genetic variant and a sex-limited to
sex-specific effect was found in QTL mapping study,
work would still be required to identify the actual causal
variant(s) and understand its molecular or gross physio-
logic impact or function.
Unfortunately, few QTL mapping studies have identi-

fied, or even attempted to implicate sex-dependent gene
or genetic variant effects. However, QTL mapping stra-
tegies could easily accommodate testing hypotheses sur-
rounding sex-dependent penetrance or sex × gene
interaction effects, as described below. In addition, phe-
notypic comparisons across inbred (or outbred) strains
are often pursued in anticipation of a QTL mapping
study and could also easily accommodate sex-specific
analyses. Results of such strain comparisons could moti-
vate the search of genetic variants that have sex-limited
or sex-dependent effects.
There is a rich established literature base describing

the use of many different model species in genetic ana-
lyses (including QTL mapping studies) of cardiovascular
disease, such as fruit flies [192,193] and baboons
[194,195]. However, studies involving mice and rats
have been pursued more frequently in strain comparison
and QTL mapping studies. This prominence is more
than likely due to the availability of many inbred mouse
and rat strains that have been characterized for differ-
ences in cardiovascular phenotype profiles. The strain
comparison and QTL mapping strategies and resources
described below, all involving different mouse or rat
strains, have been pursued by geneticists to identify
genes contributing to cardiovascular disease related phe-
notypes that exhibit sex-specific effects.
Basic strain difference analysis
Many studies have investigated differences in cardiovas-
cular disease-related phenotypes between different
mouse and rat strains (see, for example, [196,197]).
Since many mouse and rat strains have been inbred to
homozygosity and have been reared in the same labora-
tory conditions, phenotypic differences between the
resulting (clone-like) animals from different strains can
be attributed to DNA sequence differences between
them. Analyses of strain differences can easily accom-
modate sex differences if male and female animals with
phenotype information are available. As simple in orien-
tation as such studies may be, however, they have not
been pursued with great frequency, probably because of
the number of individual mice or rats one might need
to detect realistic yet statistically significant strain × sex
interaction effects that could be prohibitive. As an
example of a strain comparison study involving cardio-
vascular phenotypes, Nadeau and colleagues contrasted
homocysteine levels and related phenotypes across mul-
tiple mouse strains [198] and found a number of

differences in a number of additional cardiovascular dis-
ease-related phenotypes obtained via elaborate pheno-
typing protocols [199]. The assessment of strain and sex
differences between different mouse strains is greatly
facilitated through searchable online strain phenotypic
characteristic databases and simple push-button statisti-
cal analysis tools, such as those provided in the Mouse
Phenome Database [200]http://www.jax.org/phenome.
In silico genetic analysis
The genomes of many mouse and rat strains have been
sequenced, and analyses of these genomes have revealed
substantial differences between them [201-203]. By con-
trasting and correlating the genetic differences between
strains with phenotypic differences between those
strains, one could potentially identify genetic variants
that are associated with those phenotypes. The use of
extant strain genetic and phenotypic data in this context
is referred to as ‘in silico’ QTL mapping since it involves
summary and statistical analysis of existing data and not
the generation of new data [204]. Statistical analyses
involving in silico QTL mapping studies can easily
accommodate hypothesis tests concerning sex-specific
genetic effects, and can be greatly enhanced through the
use of strain phenotype databases (for example, the
Mouse Genome Database [205]) and online statistical
analysis tools, such as those assembled within the
Mouse Phenotype Association Database (MPAD; http://
mouse.cs.ucla.edu/perl/mpad/pcont.pl).
Individual crosses and QTL mapping
As noted, the most widely used approach for identifying
genetic factors that influence a particular phenotype
involving model organisms is QTL mapping, in which
crosses between different strains are exploited that differ
phenotypically. QTL mapping strategies can easily
accommodate hypotheses about sex-specificity of genetic
variants, assuming a sufficient number of male and
female progeny are available, through the use of appro-
priate statistical models that accommodate interaction
terms, such as regression models where a phenotype is
taken as a dependent variable and genotype is an inde-
pendent or predictor variable. The inclusion of sex as an
additional independent variable as well as a genetic var-
iant × sex interaction term can be used to test hypoth-
esis about sex specific genetic variant effects. Jacob and
colleagues explored the sex-specific genetic effects on
hypertension-related traits using very sophisticated phar-
macologic and phenotyping protocols in crosses invol-
ving inbred rat strains [206,207]. Chromosome
substitution strains, in which chromosomes from a
strain with a particular phenotype are introgressed
through breeding programs into a strain without that
phenotype, have been used to identify the chromosomes
carrying sex-specific genetic factors for cardiovascular
disease-related traits in rats [208]. Nadeau and
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colleagues have pursued similar, very elegant, studies
with mouse strains [209,210].
A number of other researchers have pursued QTL

mapping studies that have explored sex-specific or sex ×
genetic variant interaction effects, but not necessarily for
specific cardiovascular disease-related phenotypes but
cardiovascular related risk factors. For example, sex ×
genetic variant effects influence fat mass and body size
[211,212] in addition to the prevalence of sex-specific
variant effects on a wide variety of complex phenotypic
endpoints [213]. Expression levels of particular genes
have been evaluated as a way of understanding the
molecular physiologic impact of genetic variants that
may ultimately impact phenotypic expression [214].
Other considerations include how to characterize sex
specific genetic networks that impact phenotypic expres-
sion using QTL mapping studies [60,215]. In addition,
studies of diet-induced bone loss using QTL mapping
strategies have found evidence for sex-specific variant
effects [216].
The large-scale multiple mouse strain Collaborative Cross
Since crosses involving two strains can only exploit the
DNA sequence variation within those two strains and
hence are limited with respect to the amount and possi-
ble interactions among many different sequence var-
iants, the ‘Collaborative Cross’ (CC) was initiated by a
number of prominent mouse geneticists [217,218]. The
CC was designed to consider multiway crosses of eight
founder mouse strains, resulting in greater genetically
determined phenotypic diversity among the progeny
than a typically two-way cross. In addition, based on cal-
culations of the diversity and progeny size generated by
the cross, the CC could have an ability to map QTLs at
an approximately 1 megabase resolution, meaning that a
causal variant might be very close to a marker asso-
ciated with a trait if identified through the CC. The CC
is considered a community resource and will be an ideal
model system for the study of sex by gene interactions
on cardiovascular disease and related phenotypes. A
very recent study leveraging the CC for the study of
genetic factors underlying energy balance traits show-
cases its potential [219].

Statistical analysis
Essential to advancing the science and developing treat-
ments/approaches to reduce disparities in healthcare

between women and men, the sex of the experimental
material (cultured cells, animals, humans) must be
reported. While this information was once routinely
given in Methods sections of scientific papers, a recent
survey of the basic science literature related to brain
and behavior found that about 75% of published papers
in areas of physiology and pharmacology related to
brain research did not report the sex of the animals
[16,17,220] and only about 20% of papers published in
cardiovascular journals with high impact factors
reported the sex of cells studied in culture [18]. Since
sex is a dichotomous variable, data should be analyzed
by sex. This analysis is separate from incorporating sex
in multivariate analysis of data. Negative or null data
should be reported. Knowledge is to be gained from
understanding in which systems/pathways or responses
sex matters and to understand and compare differences
between sexes for conditions in which one sex is most
affected or most protected [221].

Conclusions
The following conclusions can be reached (see also
Table 1). (1) Sex is a variable in defining mechanisms
responsible for cardiovascular structure and function in
health and disease, and must be considered for all
experimental designs and system choices (that is, cell
culture, isolated tissues and whole animals, including
genetically manipulated animals). (2) Phenotypes dic-
tated by the sex chromosomes are modulated by sex
steroid hormones; therefore, sex and hormonal status
are critical in the design of experiments. (3) If differen-
tial experimental results occur in animals based purely
on sex, much can be gained by studying the ‘most
affected’ as well as the ‘most protected’ sex. (4) Studies
in animals need to account for hormonal/gonadal status
in both males and females (that is, intact, gonadecto-
mized, sexually immature, hormone replete or replaced),
as well as reproductive history of females. (5) Experi-
ments that utilize both female and male animals should
be sufficiently powered to detect sex difference if they
exist or if not to provide confidence in a null finding,
which should be reported. Analysis by sex includes sex
as a dichotomous variable as well as a covariate. (6) As
numerous studies have identified differential responses
between sexes in etiology, consequences and treatment
of cardiovascular disease, the idea that studies of

Table 1 Considerations for design of studies of sex and cardiovascular structure and function in health and disease

1. Concepts of sex differences must be integrated into research design. 4. The hormonal and gonadal state must be considered along with
reproductive history in females.

2. Phenotypes are dictated by sex chromosomes and modulated by sex
steroid hormones.

5. From a statistical standpoint, studies should be powered to detect sex
differences.

3. A sex difference may be the simplest possible explanation for a
particular experimental outcome.

6. Extrapolation of experimental outcomes from one sex to the other is
invalid.
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fundamental mechanisms of cardiovascular physiology
and disease can be discerned by the study of one sex
and extrapolated to the other is scientifically invalid.
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